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BACKGROUND

Parametric cost risk isastatistical phenomena. One first assumesthat the cost is
defined by

C =h(p1, - Pm)
where h is afunction of the parameterspq, ..., Pm-

Second, one assumes that each of the parameters is arandom variable. Thisappliesto
asingle cost estimating relationship (CER) which might be in the typical Cobb-Douglas form

C=pp ™. pp M

where the g are the elasticities, or to the sum of n work breakdown structure (WBS) elements
pj in the form

C:pl+...+pn.

In acomplete cost risk simulation the cost of each WBS element would be a function h;
of parameters p1, ..., Pm With the form

C=h1(p) + ... + hp(p)



where p is the vector

P10
p=0. 0
(PmC

with components pj.

Third, one must make an assumption about the dependence of the variables within the
variable set. One may assume that the variables are statistically independent, that the variables
aretotally dependent, or that correlation exists between selected pairs of variables. If the
assumption of independence is made, then the distribution function F(C < constant) of the
WBS elements becomes arbitrarily narrow as more WBS elements are added. If thiswere the
case then we could converge on a point estimate by estimating at the lowest levels of an
arbitrarily deep WBS. Thisisnot the caseinred life. If the assumption of total dependenceis
made then the widest distribution function occurs. It has one and only one width no matter
how many samples aretaken. Thisalsoisnot thecaseinred life. Inreal life, correlation
exists between selected pairs of variables. The focus of this paper isto examine key aspects of
simulating this case.

CORRELATION AND GEOMETRY

Correlation islargely perceived to be a statistical phenomena. Itis. Butitisalsoa
geometric phenomena (Herr, 1980). To seethis, we must first view the datain vector form
(Halmos, 1974). Let x; be the vector

B
B

where n is the number of data points selected for the parameter pj. This may be viewed asa

point in n-dimensional space (Kendall, 1961). Each dimension represents the particular
Instance of selecting a value pj i for parameter pj. The transpose of the vector x; is denoted by

Xj'= [pil - Pi n].



There are m vectors xj of dimension n. Take the mean of the n data points in each

vector. Margolis (1979) shows the mean to be the orthogonal projection of the data onto the n-
vector (1, ... ,1). Thisisdisplayedin 2 dimensionsin Figure 1, that is, with 2 data points for
the parameter p.
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Figure 1. The Mean as an Orthogonal Projection
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Figure 2: Data Vectors Adjusted for the Mean.



Denote the mean vector by p = [H1, ... ,u3]" where pj isthe mean of the ith parameter
pj. Let the mean vector be the tensor operating point (O'Neill, 1966) and trand ate the space by
the coordinate function yjj = Xjj - Hj so that the mean becomesthe origin. We now have
vectorsyq, y2, and y3 which originate from the new origin at p. Thisis shown in two
dimensionsin Figure 2.

Note that the squared length |y; |2 =Y 12 + .. 1Y n2 of the vector yj isthe sum of
squares of parameter i adjusted for the mean. Note further that the dot product of y; and Yj is

Yi*yj= yi' yj = vil |yj| cos 6; i where 6; i is the angle between the vectors yj and Yj- Consider

the unit vectors uj = |§:| Then uj * uj = cos 6jj.

LetY =[yq, ..., y3]. Thenthe covariance matrix (Kendall, 1961) is

yiQ V1°Y1 - Y1°Ym O
®=Y'Y=0..0Y1--Ym]=0... ... ... O
YmUO D/m‘Y1 ym‘YmD

Oly1lly1lcosB11 ... ly1llymlcosb1m O
=0 0

Wl 1/cosBm1 - Ymllymlcos9mmD)

dy1l 0 O prosdyy .. C0591m Hdval 0 0 ¢
o=00 ... 0 DD .. D[]O ... 0 O
0o o |ym|Dm:osem1 cosemm DDO 0 lymlO

dP=MWYM
where

dy1l 0 0
M=00 ... 0
00 0 |lymlO

IS the magnitude matrix and
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is the correation matrix.

Since M isinvertible, the correlation matrix can be found from the covariance matrix by

w=mlom1

where

B0
HOOIyrnI

It isimportant to note that the covariance matrix @, in vector form, has the same
definition as Einstein's fundamental metric tensor (Cartan, 1937) which completely determines
the geometry of the data space (Einstein, 1916). Levi-Civita (1926) notes the relationship of
the angles 0 i of W between the basis vectors and the fundamental metric tensor . Although

these concepts have existed for many years they have rarely been used, or even noted, by
statisticians.

M1

What does all this mean in terms of cost risk? It means that the geometric paradigm
provides away of both visualizing and implementing cost risk.

Thethree vectors uy, ... um are orthogonal if and only if cos 6jj = 0fori #j. Thus
correlated parameters have non orthogonal unit data vectors. A basisisaset of vectors which
Span a space or subspace such that none of them may be written as alinear combination of a
subset of the other basis vectors (Halmos, 1974). Thismeansthat U = [ug, ... , Um] isa
normal but non orthogonal basis for the data space. Y =[y1, ..., Yyml isanon normal and non
orthogonal basis for the data space. Such bases require a second tensor concept, the first being
the establishment of the mean as the tensor operating point.



If wisany vector in our data space then (w « u;j) u; is the projection of w on the unit basis
vector uj (Savilleand Wood, 1991). In the terminology of tensors (w e uj) uj isthe covariant
projection of w on uj and w * Uj = |w| cosyj is the covariant component (Pellionisz and Llinas,
1980). Unfortunately, as shown in Figure 3, the covariant components ujy of non orthogonal
vectors can not be used to obtain the vector sum.
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Figure 3: Covariant and Contravariant Vectors

The vector sum must use the contravariant components uj B. These are obtained by the
transformation

uiP = ZO‘ WBA yig

where the WBY are the components of w1 Thisiscaled rais ng the index." Observe from
Figure 3 that the covariant and contravariant components are identical when the basis vectors
are orthogonal. Thisisan excellent reason for transforming the data to the basis defined by the
principal components (Dean, 1988) which is an orthonormal basis. In that basis, the covariant
and contravariant components are identical.



GENERATING CORRELATED RANDOM NUMBERS

In order to estimate cost risk, following Book and Y oung (1992), a set of random
numbers pj may be chosen from arbitrary distributions and then used to generate the estimated

distribution of cost with desired correlation which defines the cost risk. It isdesired that the
variates pj have the correlation W and covariance ®.

Choose the variates x independently from the desired distributions, and adjust them for
the mean to obtain variates y from

Yij = Xij - Wj-

Form the covariance matrix Y'Y with magnitude M as the desired magnitude to obtain ®.
Note that

Y'Y=M¥yM=MM

since the variates were chosen independently. Following Fukunaga (1990) we transform the
variates by

z=y M1
to obtain
zz=MLtvyymi=mImmmiz

Thusthe variates z are uncorrelated and have unit magnitude. Choosing new variates v defined
by

v=zyl?



we have

Vv =@ w2y zwll2=9l2zz ¢ll2=y,

Finally, choosing new variates u defined by

U=vVM=zw12 =y m1lyli2y

we have

vu=miwlZmyymlyliZy
=M w2y y mlyli2y
=M W2 Immmtyl2y
=MYM=o.

Thusthe variates u have the desired correlation and covariance. Adjusting for the mean by
Wij = Uij + 1

we obtain the desired variates wijj.

FINDING THE SQUARE ROOT OF THE CORRELATION MATRIX

The square root of a correlation matrix isnot unique. The Choleski factorization can be
used (Book and Y oung, 1992). Another technique used by the author is as follows:

Following Dean (1988), find the principle components (Overall and Klett, 1983; Press,
Teukolsky, Vetterling, and Flannery, 1992) of the correlation matrix. Thus we have the

elgenvector matrix Q and the diagonal eigenvalue matrix A such that

YO=QA andQQ'=Q'Q=1I



where

Q= [oo1 oom]
and
A1 ...00
_ 0O 0
/\_D.. Nl
00 ... AmO
Thus
Letting
w1/2: Q /\1/2)' - /\1/2 o
we have
as desired.
Thus the desired variates wjj are
Wij = Uij * 1
where

U=y MIal2q M.



OBSERVATIONS

The geometric viewpoint identifies the choice of a correlation matrix for the ssimulation
of cost risk with the pairwise choice of data vectors corresponding to the parameters used to
obtain cost risk. The correlation coefficient isthe cosine of the angle between the data vectors
after trandation to an origin at the mean and normalization for magnitude. Thus correlation is
equivalent to expressing the datain terms of anon orthogonal basis. To understand the many
resulting phenomena requires the use of the tensor concept of raising the index to transform the
measured and observed covariant components into contravariant components before vector
addition can be applied.

The geometric viewpoint also demonstrates that correlation and covariance are
geometric properties, as opposed to purely statistical properties, of the variates. Thus, variates
from different distributions may be correlated, as desired, after selection from independent
distributions.

By determining the principal components of the correlation matrix, variates with the
desired mean, magnitude, and correlation can be generated through linear transforms which
include the eigenvalues and the eigenvectors of the correlation matrix.

The conversion of the datato a non orthogonal basis uses a compound linear
transformation which distorts or stretches the data space. Hence, the correlated data does not
have the same properties as the uncorrelated data used to generate it. This phenomenais
responsible for seemingly strange observations such as the fact that the marginal distributions
of the correlated data can be quite different from the distributions used to generate the data.
Thejoint effect of statistical distributions and correlation remains afertile areafor further
research.

In terms of application to cost estimating, the geometric approach demonstrates that the
estimator must have data and must understand that data in order to properly choose the
correlation matrix appropriate for agiven estimate.

Thereisagenera feeling by employers and managers that the field of cost requires little
technical or mathematical background. Contrary to that opinion, this paper demonstrates that a
background in mathematics equivalent to that needed for typical engineering and scientific
disciplines at the masters or doctorate level is appropriate within the field of cost risk.
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